Code: 20CE6701

IV B.Tech - I Semester - Regular Examinations - DECEMBER 2023

EARTHQUAKE ENGINEERING (HONORS in CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

		BL	СО	Max.				
				Marks				
	UNIT-I							
1	With the help of neat sketches wherever	L2	CO1	14 M				
	necessary explain about the Elastic Rebound							
	theory and the Plate Tectonic theory.							
	OR							
2	Discuss in detail about the direct and indirect	L2	CO1	14 M				
	effects of earthquake. Also explain the							
	consequences of earthquake damage.							
UNIT-II								
3	With the help of neat sketches differentiate	L2	CO2	14 M				
	about the various seismic waves in detail.							
OR								
4	How do you measure the earthquake? What are	L2	CO2	14 M				
	the earthquake measurement parameters?							
	Explain. Differentiate magnitude and intensity of							
	earthquake.							
			I	1				

UNIT-III						
5	With the help of neat sketches differentiate the	L2	CO3	14 M		
	behaviour of unreinforced and reinforced					
	masonry walls.					
	OR					
6	How do you improve the performance of	L2	CO3	14 M		
	masonry buildings during the earthquake?					
	Explain.					
	UNIT-IV		 			
7	The plan and elevation of a three-storey RCC	L3	CO4	14 M		
	school building is shown in Fig. 1 below. The					
	building is located in seismic zone V. The type					
	of soil encountered is medium stiff and it is					
	proposed to design the building with a special					
	moment-resisting frame. The intensity of DL is					
	10 kN/m ² and the floors are to cater to an IL of					
	3 kN/m ² . Determine the design seismic loads on					
	the structure by equivalent lateral force method.					
	T					
	4m 3.5 m					
	3.5 m					
	4m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	4m 4m 3.5 m					
	< 4 					
	(a) Plan (b) Elevation					
	Fig. 1: Building configuration					
	OR					

8	A fixed-ended RC beam of rectangular section	L6	CO4	14 M		
	has to carry a distributed live load of 20 kN/m					
	in addition to its own weight and a dead load of					
	25 kN/m. The maximum bending moment and					
	shear force due to the earthquake are 60kN-m					
	and 40kN respectively. Centre-to-centre distance					
	between supports is 6m. Design the beam using					
	M-20 grade concrete and Fe-415 steel. Assume					
	the necessary data if required.					
UNIT-V						
9	What is base isolation? Explain the different	L2	CO5	14 M		
	techniques of seismic base isolation.					
OR						
10	What are the tuned mass dampers? Explain the	L3	CO5	14 M		
	applications of tuned mass dampers.					
			1			